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Analytical expressions for the molecular-weight dependences of intrinsic viscosity [7], sedimentation 
constant s o and diffusion coefficient D are suggested: 

[r/] = M2(K1 + K2M 1/2) -3 

S o = K 3 + K4M 1/2 

D = M - I(K 5 + K6 M1/2) 

As employed for semi-rigid and rigid-chain polymers, the coefficients Ki in these equations are non-sensitive 
to molecular-weight variation over a wider M range than the numerical coefficients in the well known 
empirical Mark-Kuhn-Houwink equations: [q] = K~M a, So = KsM 1 b and D = KDM- b. 
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I N T R O D U C T I O N  

The intrinsic viscosity [q], sedimentation constant So and 
diffusion coefficient D as functions of molecular weight 
M are usually represented by well known and widely 
used Mark-Kuhn-Houwink (MKH) empirical equations: 

[7] = K ,  Ma (1) 

so= K s M  1 -b (2) 

D = K o M -  b (3) 

The numerical values of coefficients a, b and Ki in 
equations (1)-(3) have been collected in numerous 
tables 1 . 

According to equations (1)-(3), in double-logarithmic 
scales the dependence of [7], D and s o on M must be 
linear. The experimental data obtained over a wide range 
of M, however, do not always satisfy this requirement. 

DISCUSSION 

Flexible-chain polymers 

For flexible-chain polymers the excluded-volume effects 
increase the slope of the plots of log[q] and log D versus 
log M, i.e. they increase the scaling exponents a and b 
with increasing M. For  polymer-solvent systems with 
non-linear dependence of log[q] on log M, a few attempts 
have been made to compose more universal expressions 
than equation (1) to describe adequately the dependence 
of [-q] on M. For  this purpose Palit 2 has proposed the 
relation: 

100po[7 ] + In M = K ' M  2/3 + K" (4) 

where Po is the polymer density at solute concentration 
c ~ 0, and K'  and K" are numerical coefficients. 

* Dedicated to Professor V. N. Tsvetkov's 80th birthday 

A more convenient analytical expression has been 
suggested by Dondos and Benoit3: 

1/[q] = - A 2 + A 1 M -  1/2 (5) 

The linearity of 1/[-7] plotted against M-1/2 confirmed 
by experimental data 4'5 over a wide M range allows the 
dependence of [q] on M for a flexible-chain polymer to be 
described by relation (5) with two numerical coefficients 
A1 and A 2. 

Rigid-chain polymers 

For semi-rigid and rigid-chain polymers over a wide 
M interval, the experimental dependences of log[7] 
(Figure I)  and, to a lesser degree, log D and log So on 
log M are more non-linear functions. The data in Figure I 
are consistent with the hydrodynamic theory for worm- 
like chains' 1,12. In particular, Kolomiets and Tsvetkov 
have shown 13 that the scaling exponent a in equation (1) 
is a function of the length L and diameter d of the 
macromolecule and its equilibrium rigidity, which may 
be characterized by the Kuhn segment length A of the 
equivalent chain (Figure 2). In good agreement with this 
conclusion are the experimental double-logarithmic plots 
of [7] versus M for the most rigid-chain polymers 
represented by S-shaped curves, which may be approxi- 
mated by a straight line only in a narrow M range. 

A similar conclusion is also valid for the diffusion- 
sedimentation data. We have used the theory for transla- 
tional friction of worm-like sphero-cylinders developed 
by Yamakawa 11'15 and Fujita et al. 16, which yields 
expressions (6) and (7) for high and low M values. For 
L / A  >1 2.278: 

(6) 
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Figure 1 Log-log plots of intrinsic viscosity [~/] vs. molecular weight 
M for some semi-rigid and rigid-chain polymers: (1) poly(1,4-phenylene 
terephthalamide) in 96% H2SO 4 (ref. 6), (2) poly(n-butyl isocyanate) 
in CCl 4 (ref. 7), (3) poly(n-hexyl isocyanate) in n-hexane (ref. 8), 
(4) cellulose cyanoethyl in acetone (ref. 9), (5) schizophyllan in water 
fief. 10) 
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Figure 2 Variation of the M K H  exponent a in equation (1) with 
reduced chain length L/A according to theory 12'14 for worm-like 
sphero-cylinders with reduced diameter d/A from 0.0005 to 0.1 as 
calculated by Kolomiets and Tsvetkov 13 

and for L/A < 2.278: 

D=(kT/3rctl°L)( Cl ln(L/d)+C2 + ~ C'(L/A)i-2 (7) 

where k is the Boltzmann constant, T is the absolute 
temperature and t/o is the solvent viscosity. The relations 
for coefficients B i and Ci given in refs. 11 and 16 have 
been applied to build the dependence of D on M 
according to equations (6) and (7). 

The scaling exponent b in equation (2) was calculated 
by b= - (L /D)dD/dL .  The values of b are listed in 
Table I. A comparison of Figures 2 and 3 shows that the 
dependence of the exponent b on the reduced chain length 
is similar to that of the exponent a. 

Consequently, equations (1)-(3) with constant numeri- 
cal coefficients are applicable to polymers only in a 
narrow molecular-weight range, where the plots of 
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Figure 3 Variation of the exponent b in equations (2) and (3) with 
reduced chain length L/A for worm-like sphero-cylinders with indicated 
values of reduced diameter d/A according to the theory T M 1 6  

Table 1 Theoretical values of the scaling exponent b in equations (2) and (3) for worm-like sphero-cylinders as a function of reduced chain length 
L/A and diameter d/A according to theory 11,16 

d/A 

L/A 0.0005 0.001 0.005 O.O1 0.03 0.06 O. 1 

0.001 0,511 . . . . .  
0.01 0,717 0.661 0.510 . . . .  
0.05 0.800 0.770 0.660 0.590 0.503 - - 
0.1 0.822 0.799 0.714 0.658 0.544 0.500 - 
0.5 0.853 0.838 0.788 0.757 0.686 0,624 0.568 
1.0 0.857 0.844 0.801 0.775 0.719 0.669 0.623 
2.0 0.851 0.840 0.802 0.779 0.732 0.691 0.653 
2.275 0.850 0.838 0.800 0.778 0.731 0.692 0.655 
5.0 0,803 0.790 0.749 0.727 0.681 0.644 0.611 
7.0 0.785 0,771 0.730 0.708 0.665 0.630 0.599 

10 0.764 0.750 0.710 0.688 0.647 0.615 0.587 
20 0.722 0.708 0.670 0.651 0.615 0.588 0.566 
50 0.668 0.655 0.623 0.607 0.580 0.560 0.544 
70 0.649 0.638 0.608 0.594 0,569 0.551 0.538 

100 0.631 0.621 0.594 0.581 0.559 0.544 0.532 
10 a 0.552 0.546 0.534 0.529 0.520 0.515 0,510 
104 0.517 0.515 0.511 0.509 0.507 0.505 0.503 
105 0.506 0.505 0.504 0.503 0.502 0.502 0.501 
106 0.502 0.502 0.501 0.501 0.501 0.500 0.500 
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log[r/], log D and log s o versus log M may be approxi- 
mated by straight lines. For this reason, some investi- 
gators of rigid-chain polymers do not use the MKH 
equations to describe the hydrodynamic characteristics 
of the polymers in solution as a function of M. This is 
especially true for viscometric data. At the same time 
practical needs stimulate the search for simple analytical 
relations to describe the dependences of [r/], D and s o 
on M. Among them, linear equations are of the greatest 
interest and preference. 

Relations (4) and (5) are inapplicable for this purpose, 
as the character of the [r/] variation with increasing M 
for the above polymers is quite different from that for 
flexible-chain polymers. Yamakawa 17 has found the 
properties of polymers that can be better modelled by 
worm-like chains to show a more complicated molecular- 
weight dependence, which is perhaps better described by 
the equation: 

g= K M S  + K ' 

An attempt to use this equation to describe the viscous 
properties of rigid-chain polymers was made by Skazka 18, 
who showed the parameter K' in the relation 

[r/] + K ' =  KM" (8) 

to be sensitive to the molecular diameter. However, 
relation (8), containing one more numerical parameter 
than equation (1), has not found wide practical application. 

Now we present another way of solving the problem 
in the form of an expression with two parameters. 

Numerous experimental data ~9 show that for rigid- 
chain polymers (for L / A > 2 )  the dependence of s o (or 
DM) on M 1/2 is linear over a wide M range, which agrees 
with the Hearst-Stockmayer theory z° for hydrodynamic 
properties of worm-like chains. The invariance (non- 
sensitivity to M variation) of the expression D(M[tl]) 1/3 
leads to the conclusion that the plot* of (MZ/[tl]) 1/3 
versus M a/2 should also be linear 23. 

In fact, the experimental data in Figure 4 may be 
adequately approximated by straight lines to confirm the 
theoretical prediction and suggest the expressions (9)-(11) 
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Figure 4 (M2/[~]) ~/3 plotted against M ~/2 for the same polymers as 
in Figure 1: (1) poly(1,4-phenylene terephtbalamide) in 96% H2SO 4 
(ref. 6), (2) poly(n-butyl isocyanate) in CC14 (ref. 7), (3) poly(n-hexyl 
isocyanate) in n-hexane (ref. 8), (4) cellulose cyanoethyl in acetone 
(ref. 9), (5) schizophyllan in water (ref. 10) with [q] expressed in ml g -  1 

* The linear character of the dependence of (M2/[q]) 1Is on M 1/2 for 
rigid-chain polymers was first established by Bushin et al. 21. Later, this 
result was analysed in ref. 22 
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for the description of molecular-weight dependences of 
[r/], So and D: 

[-r/] = M2(Ki + K 2 M 1 / 2 )  - 3  (9) 

S O=K 3 + K 4 M  1/2 (10) 

O = M -  I(K s + K6 M~/2) (1 l) 

where the numerical coefficients K 3 - K  6 may be related 
by the expressions: 

K s = K a R T / 1  - ~ p  K 6 = K 4 R T / 1 - ~ ;  p (12) 

with R as the gas constant, b the partial specific volume 
of the polymer and p the solvent density. 

The numerical coefficients K i may also be related to 
the conformational parameters of the macromolecule 
A, d and the mass per unit length M L along the chain 
contour 23: 

K1 = M1/2~)~ 1/3 A - 1/2 (13) 

K2 = kML(3ZAo)- 1[In(Aid)-y]  (14) 

K 3 = ML(1 -- ~p)(3m/oNA)- 1 [ In (A/d) -  y] (15) 

K 4  = M~/2(1 _ ~p) ( r loPooNA ) - 1A - 1/2 (16) 

with ~b oo = limL/a -, ~ q~ = 2.870 X 102 a tool - 1 (ref. 12 ); P oo = 
5.11 (ref. l l) ,  y=1.056 (ref. 11), N A is the Avogadro 
number and A o the hydrodynamic invariant 23. The 
coefficients K 5 and K 6 can be calculated like in (12). 

The coefficients Ki determined by the least-mean- 
square method for some semi-rigid and rigid-chain 
polymers are listed in Tables 2 and 3. One may note that, 
for a flexible-chain polymer under 0-conditions (poly(~- 
methylstyrene) in cyclohexane at 0-temperature2S), an 
analytical description of hydrodynamic properties as a 
function of M, using equations (9)-(11), is also consistent 
with the experimental data. 
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Figure 5 Theoretical dependence of(~bo~/dp)l/3(L/A) t/2 on (L/A) 1/2 for 
worm-like chains 12 taken from the table of Bushin 21. The numbers 
attached to the curves indicate the values of d/A 
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Table 2 Experimental values of coefficients K1 and K2 in equation (9), coefficient of linear correlation r 
the points of dependence of (M2/[~l]) 1/3 on M 1/2, with [r/] expressed in ml g-1 

and least-squares deflection (A2) 1/2 for 

Polymer, solvent M x 10- 3 L/A K 1 K2 r (A 2)1/2 

Poly(n-butyl isocyanate) (PBIC) in CC14 (ref. 7) 3.8-1380 0.07-27 95-+ 7 
Poly(n-hexyl isocyanate) (PHIC) in n-hexane 68-7240 1.1-121 153_+3 

(ref. 8) 
Poly(chlorohexyl isocyanate) (PCIHIC) in CC14 12-306 0.4-9.5 156 _+ 6 

(ref. 24) 
Poly(1,4-phenylene terephthalamide) (PPPT) in 4.5-45 0.5-5 48 _+ 5 

96% H2SO 4 (ref. 6) 
Poly(naphthoylene imidobenzimidazole) (PNIB) 6.7-190 1.~45 46 _+ 8 

in 96% H2SO4 (ref. 25) 
Cellulose cyanoethyl (CCE) in acetone (ref. 9) 24.5-317 1.2-16 111 _+ 5 
Polysaccharide native schizophyllan in water 96-5700 0.1-6.6 490_+ 10 

(ref. 10) 
Polysaccharide xanthan in 0.1 M aqueous NaC1 74-7400 0.3-32 430_+ 10 

(ref. 26) 
Poly(7-benzyl-L-glutamate) (PBLG) in 40-660 0.1-1.8 300 _+ 10 

N,N-dimethylformamamide (DMF) (ref. 27) 
Poly(ct-methylstyrene) (PMS) in cyclohexane 120-2900 125-3023 0_+20 

(ref. 28) 

0.43_+0.01 0.9920 17 
0.463 + 0.003 0.9997 8 

0.56_+0.02 0.9911 11 

0.42 _+ 0.03 0.9754 5 

0.62 _+ 0.03 0.9771 13 

0.76 _+ 0.01 0.9975 6 
0.39 _+ 0.01 0.9976 20 

0.51 _+ 0.01 0.9984 23 

0.50_+0.03 0.9805 21 

2.44 _+ 0.02 0.9997 29 

Table 3 Experimental values of coefficients Ka-K 6 in equations (10) and (11), coefficient of linear correlation r and least-squares deflection (A2)s 1/2 
for the points of dependence of s o (or DM) on M 1/2, with s o and D expressed in s and cm 2 s-1 

Polymer, solvent" M b x 10 -a L/A K a x 1013 K 4 x 1016 K s × 104 K 6 x 106 r (A2)s 1/2 x 1013 

PBIC in CCl 4 (ref. 7) 15-1380 0.3-27 -1.6_+0.1 -3.3_+0.2 90 19 0.9800 0.2 
PHIC in n-hexane 68-7240 1.1-121 3.8_+0.2 12.2_+0.2 250 c 80 c 0.9980 0.6 

(ref. 8) 
PC1HIC in CCI 4 12-306 0.4-9.5 -0.88_+0.05 -4.1  _+0.2 81 38 0.9895 0.09 

(ref. 24) 
PPPT in 96% H2SO 4 4.5-45 0.5-5 - - 1.3_+0.1 1.09_+0.08 0.9773 0.1 d 

(ref. 6) 
PNIB in 96% H2SO 4 6.7-190 1.6-45 - - 1.4_+0.3 1.9_+0.1 0.9772 0.4 a 

(ref. 25) 
CCE in acetone (ref. 9) 24.5-317 1.2-16 3.0_+0.1 18.0_+0.4 180 105 0.9967 0.2 
Schizophyllan in water 250-5700 0.3-6.6 5.2_+0.2 4.0_+0.1 340 c 26 c 0.9972 0.2 

(ref. 10) 
Xanthan in 0.1 M NaCl 500-7400 2.1-32 5.3_+0.2 4.0_+0.1 330 24.7 0.9989 0.1 

(ref. 26) 
PBLG in DMF (ref. 27) 150-660 0.4-1.8 2.2_+0.2 3.1 _+0.3 214 30.2 0.9642 0.1 
PMS in cyclohexane 120-2900 125-3023 -0.6_+0.1 17.8_+0.1 48 142 0.9998 0.2 

(ref. 28) 

"The same abbreviations as introduced in Table 2 
b Range of M where the dependence of s o or DM on M 1/2 may be approximated by a linear function 
c Values calcul___ated from equation (12) 
a Values of (A2) 1/2 x 104 [ 

Figure 4 s h o w s  p l o t s  o f  (M2/[rl]) 1/3 versus M 1/2 t o  be  

l i n e a r  o v e r  t he  w h o l e  M r a n g e  w i t h  L/ A  > 2.3. M o r e o v e r ,  
for  s c h i z o p h y l l a n ,  for  i n s t a n c e ,  t h e  e x p e r i m e n t a l  p o i n t s  
sa t i s fy  t he  s t r a i g h t - l i n e  a p p r o x i m a t i o n  ( cu rve  5 in  Figure 
4) o v e r  al l  t h e  M r a n g e ,  i n c l u d i n g  t he  r a n g e  w i t h  
L / A < 2 . 3 .  F o r  t h e  o t h e r  p o l y m e r s ,  t o o ,  t h e  r a n g e  for  
r e l i ab l e  l i n e a r  a p p r o x i m a t i o n  of  t h e  v i scos i ty  d a t a  b y  (9) 
is w i d e r  t h a n  t h a t  for  t he  s e d i m e n t a t i o n ~ l i f f u s i o n  d a t a ,  
as  o n e  c a n  see f r o m  c o m p a r i s o n  o f  Tables 2 a n d  3. 

T h i s  e x p e r i m e n t a l  fac t  a g r e e s  w i t h  t h e  t h e o r e t i c a l  
r e su l t s  s h o w n  in  Figures 5 a n d  6 u s i n g  a s p h e r o -  
c y l i n d r i c a l  m o d e l .  A c c o r d i n g  to  t h e s e  t h e o r i e s ,  t he  p l o t  of  
(c~o/~b)l/3(L/A) 1/2 versus (L /A)  1/2 (Figure 5), equivalent 
to  t he  d e p e n d e n c e  o f  (M2/[r]]) 1/3 o n  M 1/2, is l i n e a r  o v e r  
a w i d e r  L r a n g e  t h a n  t he  p l o t  of  P - I ( L / A ) I / 2  versus 
(L /A)  1/2 (Figure 6), e q u i v a l e n t  to  t he  d e p e n d e n c e  o f  So 
(or  DM)  o n  M t/2. 

Figure 6 Theoretical dependence of P-I(L/A)I/2 on (L/A) 1/2 for 
worm-like chains 1 ~ with indicated values of d/A 
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C O N C L U S I O N S  

Thus,  f rom the foregoing p resen ta t ion  one can see the 
wider  non-sensi t iv i ty  of coefficients in equa t ions  (9)-(11) 
to M var ia t ion  than  in the M K H  equat ions ,  and  as a 
result  their  wider  appl icab i l i ty  for adequa te  anayt ica l  
descr ip t ion  of h y d r o d y n a m i c  character is t ics  as a funct ion 
of molecu la r  weight.  

Moreove r ,  the numer ica l  coefficients in equa t ions  
(9)-(11) are re la ted to the con fo rma t iona l  pa rame te r s  of  
the macromolecu le  via express ions  (13)-(16). This  means  
tha t  one can compare  the proper t ies  of different po lymers  
from the numer ica l  values of the coefficients K 1 - K  6 
( taking into account  the different ML values).  This 
c i rcumstance  makes  equa t ions  (9)-(11) advan tageous  
over  the empir ica l  M K H  equat ions .  F ina l ly ,  equa t ions  
(9)-(11) allow one to predict  the hyd rodynamic  proper t ies  
of  r ig id-chain  po lymers  with k n o w n  values of  M L, A and  d 
in solut ion.  
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